Numerical optimization of a PCM-based heat sink with internal fins

نویسندگان

  • Peleg P. Levin
  • Avraham Shitzer
  • Gad Hetsroni
چکیده

This study presents an optimization procedure for the design of a Latent Heat Thermal Management System (LHTMS), used for cooling an electronic device with transient and high heat generation. The LHTMS consists of Phase Change Material (PCM) combined with internal fins, which are used for creating high conductive paths into the PCM. The optimization is performed with a sole aim of minimizing the LHTMS height, while still maintaining the capability of absorbing the heat generated by the electronic device, and without exceeding the maximum allowable temperature. Two dimensional, three-parametric, finite element (FEM) simulations are performed, with systematically varying both the number and thickness of the fins under several LHTMS heights. The optimized results of this study are presented and discussed, emphasizing the derived optimal PCM percentages, which are an essential parameter in designing an LHTMS. These results show that optimal PCM percentages depend on the number and the length of the fins, the heat flux at the interface, and the difference between the critical and liquidus temperatures of the PCM. 2013 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical investigating the gas slip flow in the microchannel heat sink using different materials

In this work, slip flow of helium gas has been studied in a three dimensional rectangular microchannel heat sink with 11 microchannel and 10 rectangular fins. Helium gas flow is considered ideal and incompressible. The finite volume method with using coupled algorithm is employed to carry out the computation. To validate the present work, comparison with numerical and experimental studies is do...

متن کامل

An experimental assessment of nanostructured materials embedded in a PCM-based heat sink for transient thermal management of electronic

In the present paper, an experimental assessment was performed on the transient thermal performance of a heat sink filled by a phase change material (PCM) and PCM embedded with carbon nanofibers (CNFs) and titania (TiO2) nanoparticles as nanostructured materials. In order to enhance the thermal conductivity of PCM, CNFs and TiO2 nanoparticles at different loadings (0.5wt. % and 2 wt.% of CNFs a...

متن کامل

Transient cooling of electronics using phase change material (PCM)-based heat sinks

Use of a phase change material (PCM)-based heat sink in transient thermal management of plastic quad flat package (QFP) electronic devices was investigated experimentally and numerically. Results show that increased power inputs enhance the melting rate as well as the thermal performance of the PCM-based heat sinks until the PCM is fully melted. A three-dimensional computational fluid dynamics ...

متن کامل

Experimental determination of the thermal performance of a free standing fin Structure copper heatsink

New design, experimental and numerical efforts, optimization and manufacturing process constitute the elements of investigation of this paper. The fundamental objective of the present study is to compute the thermal dissipation capability of a new design constructed for copper heatsinks and also deals with challenges in manufacturing of these components. A part of experimental efforts are condu...

متن کامل

Analytical model for melting in a semi-infinite PCM storage with an internal fin

The most PCMs with high energy storage density have an unacceptably low heat conductivity and hence internal heat transfer enhancement techniques such as fins or other metal structures are required in latent heat thermal storage (LHTS) applications. Previous work has concentrated on numerical and experimental examination in determining the influence of the fins in melting phase change material....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015